

Virtual Testing for Automotive Components and its Integration into the OEM's Product Creation Process

Dr. Gerald Seider Dr. Fabiano Bet

Orlando, 18 March, 2013

Company Profile

INTEGRATED DESIGN ANALYSIS GmbH

Consulting, Engineering Services & Virtual Test Center

Simulation and Analysis of complex fluid flow and heat transfer systems for engineering and industrial applications

Virtual Performance Testing for automotive accessory units

3D CFD/CHT Analysis

GT-SUITE 1D System Analysis

InDesA

GRATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Overview

- 1. The product creation process (PCP)
- 2. Motivation, concept and architecture of InDesA's Virtual Test Facilities
- 3. Test rig for an EGR cooler, data processing and feed back to PCP
- 4. Conclusion
- 5. Outlook to acoustic applications

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Testing for Automotive Components The OEM's V-Type Development Process

InDesA

GRATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Example for Multi-Physics System Application

- ☐ for the prediction of fuel consumption for warm-up drive cycles.
- for the assessment of thermal management and friction reduction techniques.

1D System Simulation (GT-SUITE) ⇒ need for performance data for <u>components</u> from test bench

InDesA

RATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Virtual Test Bench for a Coolant Pump

Heat Etchanger

Cooling Fan

Coolent auno

Compressor

3D CFD Simulation with STAR-CCM predicts performance of component design verification ⇒ feed back to system level

Component Level

supplier accessory units:

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Testing for Automotive Components InDesA's Virtual Test Bench Categories

- isolated component in isolated test environment
- no interaction with other components

Example: EGR cooler module

Type B

- standardized test environment
- interaction with other components

AR-CCM+

Example: two-chamber test cell for cooling fans

- unique test environment
- interaction with other components

Example: Water pump assembly

STAR-CCM+

InDesA

Virtual Testing for Automotive Components

Interaction between Component and System Level

InDesA

Virtual Testing for Automotive Components Test Rig Set-Up for an EGR Cooler Module

- Thermal Fluid/Structure Coupling
- Full details of pipes or fin/plates
- EGR valve cooling and flow leakage at by-pass flap included

Additional Boundary Conditions

- Flap position for bypass-flowEGR valve
- position

Virtual Testing for Automotive Components Pipe Bundle EGR Cooler Module

InDesA

RATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Test Rig Results for an EGR Cooler

Component Level

Coolant

- temperatures
- pressure loss
- onset of boiling
- volume flow rates
- flow uniformity

Exhaust

- outlet temperature
- pressure loss
- force on flap
- flow leakage

Structure

- temperatures
- esp. valve seat
- heat transfer

HX object Nusselt Correlation

System Level

GT-SUITE

Nu = f(Re,Pr)

 \Rightarrow heat transfer for arbitrary operating conditions

Desa

ATED DESIGN ANALYSIS

Virtual Testing for Automotive Components The InDesA Virtual Test Rig

Parallel Cluster with 112 Nodes

(14 Blades, each with 2 Intel Xeon/Nehalem Quad-Core Prozessors and InfiniBand Switch, Integrated Storage Area Network)

 compute time: 1 day for 14 steady flow operating points *)

*) for STAR-CCM+ model with 14 million cells

InDesA

GRATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Virtual Test Rig Results & Transfer to GT-SUITE

Nusselt Correlation

 excellent agreement of CFD data points with GT regression for Nu-correlation from low to high mass flow rates.

Prediction Fidelity:

InDesA has computed over 30 different EGR coolers of various designs. Prediction accuracy has been checked and approved by supplier, e.g. at the Automotive Research Experiment Station / Michigan State University. Accuracy of simulation lies within test bench accuracy of 2-3 % for the heat transfer rate.

Virtual Testing for Automotive Components Transient Simulation with Pulsating Flow

InDesA

Virtual Testing for Automotive Components Concept of InDesA's Test Facility Center

STAR-CCM+

GT-SUITE

DesA

ATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Conclusion and Outlook

InDesA's standardized Virtual Bench Testing for Accessory Components

... significantly speeds up the virtual creation process between supplier and OEM at lower costs.

In need for prototypes and physical bench testing

Outlook:

- move the concept of virtual bench testing to module level
- develop virtual testing for acoustic applications

Desa

ATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Outlook on Virtual Testing at InDesA / Acoustics

Test bench to predict noise reduction for an Air Intake System

Objective: ... test bench to be substituted by virtual testing

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Test Bench Setup for an Air Intake System

*) random signal with constant power spectral density (intensity)

Des

RATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Air Intake System – Setup Parameters

mesh:

230.000 polyhedral cells base size: 5mm

discretization accuracy:

2nd order in space and time

time step: 1.0 E-5 sec

simulation time:

5 days on 16 CPU's physical time 1.1 sec

InDesA

Virtual Testing for Automotive Components Air Intake System – Pressure Waves

INTEGRATED DESIGN ANALYSIS

InDesA

INTEGRATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Transmission Loss from 1D *GT-POWER* analysis

InDesA

RATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Transmission Loss – Comparison 1D vs 3D

excellent agreement for response of Helmholtz resonator

□ good agreement of TL up to 700 Hz

3 3D predicts higher attenuation for frequencies > 850 Hz

DesA

RATED DESIGN ANALYSIS

Virtual Testing for Automotive Components Conclusion for the Future

the concept works

- for the module level
- for acoustic applications

the concept is consistent with respect to the virtual creation process:

fast design tool for lay out of acoustic systems

to be developed for verification and substitution of physical bench testing

Thank you for your attention.

InDesA GmbH • Carl-Zeiss-Ring 19a • D-85737 Ismaning • Phone +49 (89) 552 7978-10 • Fax +49 (89) 552 7978-29 • www.InDesA.de